$0.35 \times 0.3 \times 0.2 \text{ mm}$

203 parameters

 $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

H-atom parameters constrained

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 1-(2-hydroxyethyl)-6-methyl-2phenyl-4-thioxo-1,4-dihydropyrimidine-5-carboxylate¹

José R. Sabino,^a* Ivo Vencato,^b Rodrigo M. Bastos^c and Silvio Cunha^c

^aInstituto de Física – UFG, 74001-970 Goiânia, GO, Brazil, ^bCiências Exatas e Tecnológicas – UEG, 75133-050 Anápolis, GO, Brazil, and ^cInstituto de Química, UFBa, 40170-290 Salvador, BA, Brazil Correspondence e-mail: jrsabino@if.ufg.br

Received 3 April 2007; accepted 21 April 2007

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.003 Å; R factor = 0.061; wR factor = 0.156; data-to-parameter ratio = 14.0.

The title compound, C₁₆H₁₈N₂O₃S, is of interest with respect to antibacterial and anticancer activity and shows some trypanocidal activity. The crystal packing displays $O-H \cdots N$ and $C-H \cdots S$ hydrogen bonds, forming a chain parallel to the [100] direction. The crystal structure also shows a short intermolecular C= $O \cdots \pi$ -ring interaction connecting centrosymmetrically related molecules.

Related literature

For the synthesis, see: Cunha et al. (2007). The corresponding compound with an acetyl group on C5 is described by Sabino et al. (2007). Despite the different chemical nature of these substituent groups, both compounds pack in a similar manner.

Experimental

Crystal data	
$C_{16}H_{18}N_2O_3S$	$\alpha = 60.317 \ (15)^{\circ}$
$M_r = 318.39$	$\beta = 74.555 \ (16)^{\circ}$
Triclinic, $P\overline{1}$	$\gamma = 69.765 \ (16)^{\circ}$
a = 8.2262 (15) Å	V = 819.1 (3) Å ³
b = 11.0683 (18) Å	Z = 2
c = 11.112 (2) Å	Cu Ka radiation

¹ Structural studies of 4-thioxopyrimidines. Part 2

μ =	1.88 mm^{-1}
T =	297 (2) K

Data collection

Enraf-Nonius CAD-4	2837 independent reflections
diffractometer	2630 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.025$
(North et al., 1968)	2 standard reflections
$T_{\min} = 0.597, \ T_{\max} = 0.686$	frequency: 120 min
2997 measured reflections	intensity decay: 1%
Refinement	

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.156$ S = 1.182837 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
021-H21N3 ⁱ	0.82	2.21	2.986 (2)	159
$C13-H13B\cdots S^{i}$	0.96	2.73	3.640 (2)	160

Symmetry code: (i) x - 1, y, z.

Data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors gratefully acknowledge the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Fundação de Amparo à Pesquisa do Estado da Bahia - FAPESB. We also thank CNPq for a fellowship to RMB and a research fellowship to SC.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2102).

References

Cunha, S., Bastos, R. M., Silva, P. O., Costa, G. A. N., Vencato, I., Lariucci, C., Napolitano, H. B., Oliveira, C. M. A., Kato, L., Silva, C. C., Menezes, D. & Vannier-Santos, M. A. (2007). Monatsh. Chem. 138, 111-119.

Enraf-Nonius (1993). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-
- 359. Sabino, J. R., Lariucci, C., Bastos, R. M. & Cunha, S. (2007). Acta Cryst. E63, o2850.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

supplementary materials

Acta Cryst. (2007). E63, o2851 [doi:10.1107/S1600536807019952]

Ethyl 1-(2-hydroxyethyl)-6-methyl-2-phenyl-4-thioxo-1,4-dihydropyrimidine-5-carboxylate

J. R. Sabino, I. Vencato, R. M. Bastos and S. Cunha

Comment

In continuation of our structural studies of bioactive thioxopyrimidine (Sabino *et al.*, 2007), we present the analysis of the 4-thioxopyrimidine derivative I, which exhibited some level of trypanocidal activity. This derivative differs from 1-[1-(2-hydroxyethyl)-6-methyl-2-phenyl-4-thioxo-1,4-dihydro-5-pyrimidinyl]-1-ethanone by a substituent on the ring atom C5, where (I) has a carboxylate group instead of an acetyl group.

The molecular structure of (I) is depicted in Fig. 1. The conformation of I is defined by steric effects. The angle between the pyrimidine mean plane (rms 0.017 Å) and the mean plane through the phenyl ring is 87.71 (8)°. The torsion angle C20—C19—N1—C6 is -89.1 (2)° and C4—C5—C14—O15 is 91.1 (3)°. Bond lengths are within the expected ranges with the exception of the C2–C7 and C5–C14 bonds which present the same elongation of 0.03 Å from the formal single bond distance.

The crystal packing (Fig. 2) is mediated by a hydrogen bond of type O21–H21···N3ⁱⁱ and a non-classical hydrogen bond of type C13–H13B···Sⁱⁱ [Symmetry code: (ii) 1-x, -y, 1-z], which connect neighboring molecules in a linear chain along [100]. Intermolecular contacts of type C14= O15ⁱ··· π -ring [Symmetry code: (i)1-x, -y, 1-z] mediate the packing via the sp² ring atoms C6, N1 and C2, building a dimer about an inversion center. The distance N1···O15ⁱ is 2.858 (2) Å, 0.21 Å shorter than the sum of van der Waals radii of the atoms involved.

Experimental

Compound (I) [m.p. >573 K] was prepared according to a known procedure (Cunha *et al.*, 2007). Single crystals of I were obtained by slow evaporation of a solution in CHCl₃ at room temperature.

Refinement

All H atoms were positioned in idealized coordinates with distances 0.93–0.97 and 0.82 Å for the C atoms and O atoms, respectively. H atoms were refined isotropically and allowed to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(methyl C,O)$.

Figures

Fig. 1. View of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitray radius.

Fig. 2. Packing diagram of (I). Intra- and intermolecular contacts are shown as dashed lines. Only the H atoms involved in H-bonds are shown.

ethyl 1-(2-hydroxyethyl)-6-methyl-2-phenyl-4-thioxo-1,4-dihydropyrimidine- 5-carboxylate

Crystal data	
$C_{16}H_{18}N_2O_3S$	Z = 2
$M_r = 318.39$	$F_{000} = 336$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.291 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Cu $K\alpha$ radiation $\lambda = 1.5418$ Å
a = 8.2262 (15) Å	Cell parameters from 25 reflections
b = 11.0683 (18) Å	$\theta = 16.4 - 50.6^{\circ}$
c = 11.112 (2) Å	$\mu = 1.88 \text{ mm}^{-1}$
$\alpha = 60.317 (15)^{\circ}$	T = 297 (2) K
$\beta = 74.555 \ (16)^{\circ}$	Prism, yellow
$\gamma = 69.765 \ (16)^{\circ}$	$0.35\times0.3\times0.2~mm$
V = 819.1 (3) Å ³	
Data collection	
Enraf–Nonius CAD-4 diffractometer	$\theta_{\text{max}} = 67.1^{\circ}$
non–profiled $\omega/2\theta$ scans	$\theta_{\min} = 4.6^{\circ}$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$h = -9 \rightarrow 9$
$T_{\min} = 0.597, T_{\max} = 0.686$	$k = -11 \rightarrow 13$
2997 measured reflections	$l = 0 \rightarrow 13$
2837 independent reflections	2 standard reflections
2630 reflections with $I > 2\sigma(I)$	every 120 min
$R_{\rm int} = 0.025$	intensity decay: 1%
Refinement	
Refinement on F^2	$(\Delta/\sigma)_{max} < 0.001$

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.156$ S = 1.182837 reflections 203 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0886P)^2 + 0.1677P]$ where $P = (F_0^2 + 2F_c^2)/3$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{max} = 0.33 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$

Extinction correction: SHELXL97,

 $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.181 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S	0.87159 (7)	0.12970 (7)	0.20413 (8)	0.0745 (3)
N1	0.30304 (19)	0.27798 (15)	0.30438 (15)	0.0430 (4)
C2	0.4169 (2)	0.35827 (18)	0.27024 (18)	0.0430 (4)
N3	0.5847 (2)	0.31579 (16)	0.24112 (17)	0.0495 (4)
C4	0.6574 (3)	0.1819 (2)	0.2448 (2)	0.0488 (5)
C5	0.5435 (2)	0.09323 (18)	0.28549 (18)	0.0456 (5)
C6	0.3693 (2)	0.13928 (18)	0.31766 (18)	0.0449 (4)
C7	0.3467 (2)	0.50303 (18)	0.2683 (2)	0.0468 (5)
C8	0.3321 (3)	0.5140 (2)	0.3891 (2)	0.0645 (6)
H8	0.3674	0.4323	0.4703	0.077*
C9	0.2646 (4)	0.6472 (3)	0.3889 (3)	0.0757 (7)
Н9	0.2532	0.6551	0.4705	0.091*
C10	0.2147 (4)	0.7674 (3)	0.2692 (3)	0.0799 (8)
H10	0.1683	0.8566	0.2698	0.096*
C11	0.2326 (4)	0.7569 (2)	0.1498 (3)	0.0876 (9)
H11	0.1994	0.8392	0.0685	0.105*
C12	0.2999 (4)	0.6243 (2)	0.1476 (2)	0.0686 (6)
H12	0.3132	0.6177	0.0652	0.082*
C13	0.2481 (3)	0.0445 (2)	0.3715 (3)	0.0632 (6)
H13A	0.3096	-0.0439	0.3656	0.095*
H13B	0.1524	0.0924	0.3165	0.095*
H13C	0.2045	0.0243	0.4669	0.095*
C14	0.6211 (3)	-0.0571 (2)	0.2998 (2)	0.0520 (5)
O15	0.6649 (3)	-0.15931 (16)	0.40618 (18)	0.0888 (7)
O16	0.63106 (19)	-0.06239 (13)	0.18248 (14)	0.0546 (4)
C17	0.7073 (3)	-0.2034 (2)	0.1833 (2)	0.0651 (6)
H17A	0.6387	-0.2702	0.2507	0.078*

supplementary materials

H17B	0.8254	-0.2418	0.208	0.078*
C18	0.7075 (4)	-0.1824 (3)	0.0412 (3)	0.0876 (9)
H18A	0.7589	-0.2726	0.037	0.131*
H18B	0.7738	-0.1147	-0.0246	0.131*
H18C	0.5897	-0.1462	0.0188	0.131*
C19	0.1130 (2)	0.3349 (2)	0.3320 (2)	0.0515 (5)
H19A	0.0928	0.4045	0.3667	0.062*
H19B	0.0628	0.2568	0.4035	0.062*
C20	0.0236 (3)	0.4058 (2)	0.2020 (3)	0.0636 (6)
H20A	0.0689	0.487	0.1312	0.076*
H20B	0.0452	0.3377	0.1651	0.076*
O21	-0.1572 (2)	0.45270 (19)	0.2374 (3)	0.0871 (6)
H21	-0.21	0.4136	0.2198	0.131*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0453 (4)	0.0706 (4)	0.1179 (6)	0.0022 (3)	-0.0192 (3)	-0.0558 (4)
N1	0.0458 (8)	0.0357 (8)	0.0484 (8)	-0.0048 (6)	-0.0136 (6)	-0.0191 (6)
C2	0.0487 (10)	0.0354 (9)	0.0458 (9)	-0.0077 (7)	-0.0110 (7)	-0.0181 (8)
N3	0.0491 (9)	0.0390 (8)	0.0632 (10)	-0.0073 (6)	-0.0104 (7)	-0.0255 (7)
C4	0.0513 (10)	0.0429 (10)	0.0552 (10)	-0.0033 (8)	-0.0176 (8)	-0.0242 (8)
C5	0.0572 (11)	0.0347 (9)	0.0467 (10)	-0.0034 (7)	-0.0190 (7)	-0.0185 (8)
C6	0.0565 (10)	0.0351 (9)	0.0466 (9)	-0.0073 (7)	-0.0192 (7)	-0.0172 (8)
C7	0.0478 (10)	0.0353 (9)	0.0580 (11)	-0.0076 (7)	-0.0078 (8)	-0.0226 (8)
C8	0.0837 (15)	0.0487 (11)	0.0625 (13)	-0.0103 (10)	-0.0110 (10)	-0.0287 (10)
С9	0.0861 (17)	0.0671 (15)	0.0901 (17)	-0.0139 (12)	-0.0023 (13)	-0.0545 (14)
C10	0.0803 (16)	0.0480 (13)	0.124 (2)	0.0007 (11)	-0.0272 (15)	-0.0513 (15)
C11	0.120 (2)	0.0358 (11)	0.105 (2)	-0.0075 (12)	-0.0478 (17)	-0.0210 (12)
C12	0.0980 (18)	0.0420 (11)	0.0653 (13)	-0.0137 (11)	-0.0219 (12)	-0.0202 (10)
C13	0.0647 (13)	0.0467 (11)	0.0855 (15)	-0.0147 (9)	-0.0221 (11)	-0.0281 (11)
C14	0.0648 (12)	0.0380 (10)	0.0541 (11)	-0.0025 (8)	-0.0212 (8)	-0.0211 (9)
015	0.1527 (19)	0.0406 (8)	0.0626 (10)	0.0108 (9)	-0.0489 (10)	-0.0206 (8)
016	0.0703 (9)	0.0381 (7)	0.0556 (8)	0.0038 (6)	-0.0226 (6)	-0.0250 (6)
C17	0.0788 (15)	0.0417 (11)	0.0746 (14)	0.0060 (9)	-0.0219 (11)	-0.0334 (10)
C18	0.119 (2)	0.0667 (15)	0.0732 (15)	0.0008 (15)	-0.0080 (14)	-0.0458 (13)
C19	0.0454 (10)	0.0467 (10)	0.0645 (12)	-0.0078 (8)	-0.0085 (8)	-0.0278 (9)
C20	0.0557 (12)	0.0510 (11)	0.0833 (15)	-0.0028 (9)	-0.0277 (10)	-0.0268 (11)
O21	0.0531 (9)	0.0676 (10)	0.1593 (18)	0.0065 (7)	-0.0400 (10)	-0.0650 (12)

Geometric parameters (Å, °)

S—C4	1.665 (2)	O16—C17	1.463 (2)
N1—C2	1.365 (2)	C17—C18	1.478 (3)
N1—C6	1.384 (2)	C19—C20	1.512 (3)
N1—C19	1.480 (2)	C20—O21	1.412 (3)
N1—015 ⁱ	2.858 (2)	O21—H21	0.82
C2—O15 ⁱ	3.182 (3)	С8—Н8	0.93

C6-015 ⁱ	3.117 (2)	С9—Н9	0.93
C2—N3	1.302 (2)	C10—H10	0.93
C2—C7	1.494 (2)	C11—H11	0.93
N3—C4	1.377 (2)	C12—H12	0.93
C4—C5	1.420 (3)	C13—H13A	0.96
C5—C6	1.358 (3)	C13—H13B	0.96
C5—C14	1.503 (2)	C13—H13C	0.96
C6-C13	1.496 (3)	C17—H17A	0.97
C7—C12	1 372 (3)	C17—H17B	0.97
C7—C8	1.372(3)	C18—H18A	0.96
C8-C9	1.377(3)	C18—H18B	0.96
C9-C10	1.367 (4)	C18—H18C	0.96
C10-C11	1.354(4)	C19—H19A	0.97
C11_C12	1.334 (4)	C19H19B	0.97
C14-015	1.105 (3)		0.97
C14016	1.100(3)	C20—H20A	0.97
	1.515 (2)		0.97
C2—N1—C6	118.59 (15)	C6—C13—H13B	109.5
C2—N1—C19	121.19 (14)	H13A—C13—H13B	109.5
C6—N1—C19	120.19 (15)	C6—C13—H13C	109.5
N3—C2—N1	124.07 (15)	H13A—C13—H13C	109.5
N3—C2—C7	117.36 (15)	H13B—C13—H13C	109.5
N1—C2—C7	118.55 (15)	O15—C14—O16	124.43 (17)
C2—N3—C4	119.96 (16)	O15—C14—C5	123.69 (18)
N3—C4—C5	117.43 (17)	O16—C14—C5	111.86 (15)
N3—C4—S	119.70 (15)	C14—O16—C17	116.71 (15)
C5—C4—S	122.87 (15)	O16—C17—C18	106.96 (17)
C6—C5—C4	121.37 (16)	O16—C17—H17A	110.3
C6-C5-C14	120.09 (17)	C18—C17—H17A	110.3
C4—C5—C14	118.46 (17)	O16—C17—H17B	110.3
C5-C6-N1	118.38 (16)	C18—C17—H17B	110.3
C5—C6—C13	122.62 (17)	H17A—C17—H17B	108.6
N1-C6-C13	118.97 (17)	C17—C18—H18A	109.5
С12—С7—С8	120.04 (18)	C17—C18—H18B	109.5
C12—C7—C2	120.84 (17)	H18A—C18—H18B	109.5
C8—C7—C2	119.11 (17)	C17—C18—H18C	109.5
С7—С8—С9	119.5 (2)	H18A—C18—H18C	109.5
С7—С8—Н8	120.2	H18B—C18—H18C	109.5
С9—С8—Н8	120.2	N1—C19—C20	111.69 (17)
C10—C9—C8	120.2 (2)	N1—C19—H19A	109.3
С10—С9—Н9	119.9	C20—C19—H19A	109.3
С8—С9—Н9	119.9	N1—C19—H19B	109.3
C11—C10—C9	120.2 (2)	C20—C19—H19B	109.3
C11—C10—H10	119.9	H19A—C19—H19B	107.9
C9—C10—H10	119.9	O21—C20—C19	1084(2)
C10-C11-C12	120.6 (2)	O21—C20—H20A	110
C10-C11-H11	119.7	C19—C20—H20A	110
C12—C11—H11	119.7	021 - C20 - H20R	110
C7—C12—C11	119.4 (2)	C19—C20—H20B	110
C, C12 C11	···· (4)	017 020 11200	110

supplementary materials

C7—C12—H12	120.3	H20A-C20-H20B	108.4
C11—C12—H12	120.3	C20—O21—H21	109.5
С6—С13—Н1ЗА	109.5		
C6—N1—C2—N3	4.2 (3)	N1—C2—C7—C12	-92.5 (2)
C19—N1—C2—N3	-178.05 (16)	N3—C2—C7—C8	-90.3 (2)
C6—N1—C2—C7	-174.66 (15)	N1—C2—C7—C8	88.7 (2)
C19—N1—C2—C7	3.1 (2)	C12—C7—C8—C9	2.2 (3)
N1—C2—N3—C4	-0.5 (3)	C2—C7—C8—C9	-179.0 (2)
C7—C2—N3—C4	178.33 (15)	C7—C8—C9—C10	-0.8 (4)
C2—N3—C4—C5	-2.0 (3)	C8—C9—C10—C11	-0.7 (4)
C2—N3—C4—S	178.69 (14)	C9—C10—C11—C12	0.7 (5)
N3—C4—C5—C6	0.9 (3)	C8—C7—C12—C11	-2.1 (4)
S-C4-C5-C6	-179.84 (13)	C2-C7-C12-C11	179.0 (2)
N3—C4—C5—C14	-175.92 (15)	C10-C11-C12-C7	0.7 (4)
S-C4-C5-C14	3.4 (2)	C6—C5—C14—O15	-85.8 (3)
C4—C5—C6—N1	2.7 (3)	C4—C5—C14—O15	91.1 (3)
C14-C5-C6-N1	179.42 (15)	C6—C5—C14—O16	92.9 (2)
C4—C5—C6—C13	-175.09 (17)	C4—C5—C14—O16	-90.3 (2)
C14—C5—C6—C13	1.7 (3)	O15-C14-O16-C17	-2.3 (3)
C2—N1—C6—C5	-5.1 (2)	C5-C14-O16-C17	179.06 (17)
C19—N1—C6—C5	177.14 (15)	C14—O16—C17—C18	-179.1 (2)
C2-N1-C6-C13	172.76 (16)	C2-N1-C19-C20	93.1 (2)
C19—N1—C6—C13	-5.0 (2)	C6—N1—C19—C20	-89.1 (2)
N3—C2—C7—C12	88.6 (2)	N1-C19-C20-O21	177.98 (15)
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O21—H21···N3 ⁱⁱ	0.82	2.21	2.986 (2)	159
C13—H13B···S ⁱⁱ	0.96	2.73	3.640 (2)	160
Symmetry codes: (ii) $x-1$, y , z .				

